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Abstract

The dynamic thermal behavior of a bi-layered composite sphere due to a sudden temperature change on the outer

surface is investigated. The analytical–numerical technique, which is based on the Laplace transformation and the

Riemann-sum approximation, is employed to predict the temperature and heat flux histories in the composite sphere.

The effects of different parameters such as the relaxation time, the thermal diffusivity ratio, the thermal conductivity

ratio, the relaxation time ratio, and the radius ratio of the inner and outer layers of the composite sphere are studied

and presented.

� 2003 Elsevier Ltd. All rights reserved.
1. Introduction

The relation between heat flux and temperature

gradient is given by the Fourier law, a parabolic heat

conduction model [1,2]. This model is appropriate for

many practical heat conduction conditions. In the

Fourier law, there is no time difference between the heat

flux and temperature gradient, and this implies that the

heat propagation speed is infinite.

While the heat transfer situations include extremely

high temperature gradients, temperatures near absolute

zero, extremely large heat fluxes, and extremely short

transient duration, the heat propagation speed is finite,

and the Fourier law should be modified [3–11]. Bertman

and Sandiford [3] illustrated the wave behavior for heat

propagation through helium(II) at 1 K in their experi-

ments. Qiu et al. [4] used femtosecond laser to heat gold

films, and found that the experimental results deviated

from the Fourier law significantly. Kim et al. [7] used a

thermal wave model proposed by Cattaneo and Vern-

otte to analyze the extreme short-time temperature re-
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sponse of a semi-infinite region due to axisymmetric

continuous or pulsed surface heat sources. Al-Nimr and

Hader [8] investigated the effect of the phase-lag concept

by using the wave theory of heat conduction on the

thermal behavior of melting and solidification. Chen and

Beraun [9] used the dual-hyperbolic two-step radiation

heating model to study ultrashort laser pulse interac-

tions with metal films. Tzou and Chiu [10,11] employed

the dual-phase-lag (DPL) model to analyze the thermal

response of metal films due to ultrafast laser heating.

According to the studies of Kaminski and coworkers

[12–14], the propagation speeds of thermal wave in

many homogenous and nonhomogenous materials are

indeed finite.

The shapes of carbonaceous particles, fuel droplets,

molecules, and cells are nearly spherical, can be con-

sidered as spherical medium. There are many researches

about spherical medium by using the Fourier law [15–

18]. When the relaxation time presents for some situa-

tions, such as extremely high temperature gradients,

temperatures near absolute zero, extremely high heat

fluxes, and extremely short transient duration, the

Fourier law is no more valid, and the problems should

be analyzed by using the thermal wave model. The

thermal wave model can be written in the form [6–

9,12,19–21]
ed.
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Nomenclature

A coefficient in Eq. (14a)

B coefficient in Eq. (14b)

c heat propagation speed [m s�1]

C coefficient in Eq. (16a)

C11 coefficient in Eq. (15a)

C12 coefficient in Eq. (15b)

C13 coefficient in Eq. (18a)

C14 coefficient in Eq. (18b)

C21 coefficient in Eq. (15c)

C22 coefficient in Eq. (15d)

C23 coefficient in Eq. (18c)

C24 coefficient in Eq. (18d)

D coefficient in Eq. (16b)

E coefficient in Eq. (19a)

F coefficient in Eq. (19b)

i complex number, i¼
ffiffiffiffiffiffiffi
�1

p

k thermal conductivity [Wm�1 K�1]

n parameter in Eq. (20)

N parameter in Eq. (20)

q heat flux in the composite sphere [Wm�2]

Q dimensionless heat flux

Q0 dimensionless heat flux on the outer surface

of the composite sphere

Q Laplace transform of dimensionless heat

flux

Q1p the dimensionless heat flux in the inner layer

obtained by solving parabolic heat conduc-

tion model

Q2p the dimensionless heat flux in the outer layer

obtained by solving parabolic heat conduc-

tion model

Qn normalized heat flux

r radial coordinate [m]

s Laplacian parameter

t physical time [s]

T temperature [K]

T0 the initial temperature [K]

Tw the temperature on the outer surface of the

composite sphere [K]

Greek symbols

a thermal diffusivity [m2 s�1]

c parameter in Eq. (22)

e dimensionless relaxation time

g dimensionless time

h dimensionless temperature
�hh Laplace transform of dimensionless tem-

perature
�hh1p the dimensionless temperature in the inner

layer obtained by solving parabolic heat

conduction model
�hh2p the dimensionless temperature in the outer

layer obtained by solving parabolic heat

conduction model

n dimensionless radial coordinate

nr nr ¼ r1
r2

s relaxation time [s]

Subscripts

1 the inner layer of the composite sphere

2 the outer layer of the composite sphere

r the ratio of the inner layer to the outer layer

of the composite sphere
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~qqð~rr; tÞ þ s
o~qqð~rr; tÞ

ot
¼ �kr~TT ð~rr; tÞ ð1Þ

r2~TT ð~rr; tÞ þ s
o½r2~TT ð~rr; tÞ�

ot
¼ 1

a
o~TT ð~rr; tÞ

ot
ð2Þ

where ~rr is the position vector, t is the physical time,

~qqð~rr; tÞ is the heat flux vector, ~TT ð~rr; tÞ is the temperature

distribution field, k is the thermal conductivity, a is the

thermal diffusivity, and the relaxation time s is given as

s ¼ a
c2

ð3Þ

where c is the thermal wave propagation speed. When

the thermal wave propagation speed c approaches in-

finity, the relaxation time s decreases to zero, and the

thermal wave model will reduce to the Fourier law.

Experimental facts showed that the thermal propa-

gation speed is finite in low-pressure gases, cryogenic

engineering, nuclear engineering, and seismology

[12,21,22]. The dynamic thermal response of a spherical
medium is very important in cryogenic engineering and

nuclear engineering. Zhang and Liu [14] analyzed the

thermal wave propagation in a spherical medium due to

a temperature on its surface. Jiang and Liu [22] con-

sidered the hyperbolic heat conduction in a hollow

spherical medium due to temperatures on its inner sur-

face and outer surfaces. To the authors� knowledge, the
dynamic thermal behavior of a bi-layered composite

spherical medium has not been investigated yet.

A Laplace transformation and the Riemann-sum

approximation method [9,20,23] are used to obtain the

solution for the temperature and heat flux histories in

the composite sphere.
2. Problems formulations and analysis

The composite sphere is made up of bi-layers of

different substances, as depicted in Fig. 1. Initially, the

composite sphere is maintained at a uniform tempera-
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Fig. 1. Schematic diagram of the bi-layered composite sphere.
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ture, and there is a sudden temperature change on its

outer surface. Due to the high-rate of change of tem-

perature change or temperature field on the outer sur-

face near absolute zero, the thermal wave equation or

the hyperbolic heat conduction equation is used to an-

alyze this problem. We assume that the physical and

thermal properties of the composite sphere are constant,

and there is no contact thermal resistance between the

interface of bi-layered substances. The heat flux will

start to propagate after some time, the relaxation time s,
when the temperature field has been imposed on the

outer surface. The governing equations for this problem

are

oT1
ot

¼ � a1
k1

2

r
q1

�
þ oq1

or

�
; 06 r < r1 ð4aÞ

oT1
or

¼ � 1

k1
q1

�
þ s1

oq1
ot

�
; 06 r < r1 ð4bÞ

oT2
ot

¼ � a2
k2

2

r
q2

�
þ oq2

or

�
; r1 6 r6 r2 ð4cÞ

oT2
or

¼ � 1

k2
q2

�
þ s2

oq2
ot

�
; r1 6 r6 r2 ð4dÞ

where subscript 1 represents the properties of the inner

layer substances, and subscript 2 the outer layer sub-

stances, respectively.

The boundary conditions for t > 0 are

oT1ð0; tÞ
or

¼ 0 ð5aÞ

T2ðr2; tÞ ¼ Tw ð5bÞ

T1ðr1; tÞ ¼ T2ðr1; tÞ ð5cÞ

q1ðr1; tÞ ¼ q2ðr1; tÞ ð5dÞ

where Tw is the imposed temperature on the outer sur-

face.
The initial conditions at t ¼ 0 are

T1ðr; 0Þ ¼ T0; 06 r < r1 ð6aÞ

T2ðr; 0Þ ¼ T0; r1 6 r6 r2 ð6bÞ

q1ðr; 0Þ ¼ 0; 06 r < r1 ð6cÞ

q2ðr; 0Þ ¼ 0; r1 6 r6 r2 ð6dÞ

where T0 is the initial temperature of the composite

sphere.

In Eq. (4a), r ¼ 0 is a singular point, and the condi-

tions for r ¼ 0 are

q1ð0; tÞ ¼ 0; r ¼ 0 ð7aÞ

lim
r!0þ

oT1
or

� �
¼ 0 ð7bÞ

For convenience in the subsequent analysis, we define

the following dimensionless parameters:

h1ðn; gÞ ¼
T1ðr; tÞ � T0
Tw � T0

; h2ðn; gÞ ¼
T2ðr; tÞ � T0
Tw � T0

;

n ¼ r
r2
; g ¼ a2t

r22
; e ¼ a2s2

r22
; kr ¼

k1
k2
; ar ¼

a1
a2

;

sr ¼
s1
s2
; Q1 ¼

q1r2
k2ðTw � T0Þ

; Q2 ¼
q2r2

k2ðTw � T0Þ
;

ð8Þ

The Laplace transform technique is employed to deal

with the g-derivative terms in the equations. The La-

place transform of dimensionless temperature �hh is de-

fined as

L½hðn; gÞ� ¼ �hhðn; sÞ ¼
Z 1

0

hðn; gÞe�sg dg ð9Þ

where s is the Laplace transform parameter.

Taking the Laplace transform of dimensionless form

of Eqs. (4)–(7), we have

Q1ð0; sÞ ¼ 0 ð10aÞ

lim
n!0þ

d�hh1
dn

 !
¼ 0 ð10bÞ

s�hh1 ¼ � ar
kr

2

n
Q1

�
þ dQ1

dn

�
; 0 < n < nr ð10cÞ

d�hh1
dn

¼ � 1

kr
Q1

�
þ sresQ1

�
; 0 < n < nr ð10dÞ

s�hh2 ¼ � 2

n
Q2

�
þ dQ2

dn

�
; nr 6 n6 1 ð10eÞ

d�hh2
dn

¼ � Q2

�
þ esQ2

�
; nr 6 n6 1 ð10fÞ

d�hh1ð0; sÞ
dn

¼ 0 ð11aÞ
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�hh2ð1; sÞ ¼
1

s
ð11bÞ

�hh1ðnr; sÞ ¼ �hh2ðnr; sÞ ð11cÞ

Q1ðnr; sÞ ¼ Q2ðnr; sÞ ð11dÞ
�hh1ðn; 0Þ ¼ 0; 0 < n < nr ð12aÞ
�hh2ðn; 0Þ ¼ 0; nr 6 n6 1 ð12bÞ

Q1ðn; 0Þ ¼ 0; 0 < n < nr ð12cÞ

Q2ðn; 0Þ ¼ 0; nr 6 n6 1 ð12dÞ

where nr ¼ r1
r2
.

The solutions to Eqs. (10a)–(10f) subject to Eqs.

(11a)–(11d) and (12a)–(12d) are

lim
n!0þ

�hhðn; sÞ ¼ finite constant ð13aÞ

�hh1ðn; sÞ ¼
1

n
C11e

ffiffiffiffi
As

p
n

h
þ C12e

�
ffiffiffiffi
As

p
n
i
; 0 < n < nr ð13bÞ

�hh2ðn; sÞ ¼
1

n
C21e

ffiffiffiffi
Bs

p
n

h
þ C22e

�
ffiffiffiffi
Bs

p
n
i
; nr 6 n6 1 ð13cÞ

Q1ð0; sÞ ¼ 0 ð13dÞ

Q1ðn;sÞ

¼� kr
arA

ð
ffiffiffiffiffi
As

p
n�1ÞC11e

ffiffiffiffi
As

p
n�ð

ffiffiffiffiffi
As

p
nþ1ÞC12e

�
ffiffiffiffi
As

p
n

n2

" #
;

0< n< nr ð13eÞ

Q2ðn; sÞ

¼ � 1

B
ð
ffiffiffiffiffi
Bs

p
n� 1ÞC21e

ffiffiffiffi
Bs

p
n � ð

ffiffiffiffiffi
Bs

p
nþ 1ÞC22e

�
ffiffiffiffi
Bs

p
n

n2

" #
;

nr 6 n6 1 ð13fÞ

where

A ¼ 1þ sres
ar

ð14aÞ

B ¼ 1þ es ð14bÞ

C11 ¼
C21e

ffiffiffiffi
Bs

p
nr þ C22e

�
ffiffiffiffi
Bs

p
nr

e
ffiffiffiffi
As

p
nr � e�

ffiffiffiffi
As

p
nr

ð15aÞ

C12 ¼ �C11 ð15bÞ

C21 ¼
ð
ffiffiffiffiffi
Bs

p
nr þ 1þ CÞe�

ffiffiffiffi
Bs

p
nr

sD
ð15cÞ

C22 ¼
ð
ffiffiffiffiffi
Bs

p
nr � 1� CÞe

ffiffiffiffi
Bs

p
nr

sD
ð15dÞ

in which

C ¼ krB½ð
ffiffiffiffiffi
As

p
nr � 1Þe

ffiffiffiffi
As

p
nr þ ð

ffiffiffiffiffi
As

p
nr þ 1Þe�

ffiffiffiffi
As

p
nr �

arA e
ffiffiffiffi
As

p
nr � e�

ffiffiffiffi
As

p
nr

� � ð16aÞ
D ¼ ð
ffiffiffiffiffi
Bs

p
nr � 1� CÞeðnr�1Þ

ffiffiffiffi
Bs

p
þ ð

ffiffiffiffiffi
Bs

p
nr þ 1þ CÞeð1�nrÞ

ffiffiffiffi
Bs

p

ð16bÞ

When the thermal propagation speed c is infinite, the
relaxation time s is zero. The governing equations (4a)–

(4d) will be reduced to the classical Fourier law,

the parabolic heat conduction equation, whose solutions

are

lim
n!0þ

�hh1pðn; sÞ ¼ finite constant ð17aÞ

�hh1pðn; sÞ ¼
1

n
C13e

ffiffiffi
s
ar

p
n

h
þ C14e

�
ffiffiffi
s
ar

p
n
i
; 06 n6 nr ð17bÞ

�hh2pðn; sÞ ¼
1

n
C23e

ffiffi
s

p
n

h
þ C24e

�
ffiffi
s

p
n
i
; nr 6 n6 1 ð17cÞ

Q1pð0; sÞ ¼ 0 ð17dÞ

Q1pðn;sÞ

¼�kr

ffiffiffis
ar

p
n�1

� 	
C13e

ffiffiffi
s
ar

p
n� ffiffiffis

ar

p
nþ1

� 	
C14e

�
ffiffiffi
s
ar

p
n

n2

2
4

3
5;

0< n< nr ð17eÞ

Q2pðn; sÞ ¼ � ð ffiffi
s

p
n� 1ÞC23e

ffiffi
s

p
n � ð ffiffi

s
p

nþ 1ÞC24e
�
ffiffi
s

p
n

n2

� �
;

nr 6 n6 1 ð17fÞ

C13 ¼
C23e

ffiffi
s

p
nr þ C24e

�
ffiffi
s

p
nr

e
ffiffiffi
s
ar

p
nr � e

�
ffiffiffi
s
ar

p
nr

ð18aÞ

C14 ¼ �C13 ð18bÞ

C23 ¼
ð ffiffi

s
p

nr þ 1þ EÞe�
ffiffi
s

p
nr

sF
ð18cÞ

C24 ¼
ð ffiffi

s
p

nr � 1� EÞe
ffiffi
s

p
nr

sF
ð18dÞ

in which

E ¼
kr

ffiffiffis
ar

p
nr � 1

� 	
e
ffiffiffi
s
ar

p
nr þ ffiffiffis

ar

p
nr þ 1

� 	
e
�
ffiffiffi
s
ar

p
nr

h i
e
ffiffiffi
s
ar

p
nr � e

�
ffiffiffi
s
ar

p
nr

ð19aÞ

F ¼ ð
ffiffi
s

p
nr � 1� EÞeðnr�1Þ

ffiffi
s

p
þ ð

ffiffi
s

p
nr þ 1þ EÞeð1�nrÞ

ffiffi
s

p

ð19bÞ
3. Analytical–numerical technique

To obtain the temperature and heat flux histories of

the bi-layered composite sphere, Eqs. (13a)–(13f) and

(17a)–(17f) must be transformed back into the time

domain. Bromwich contour integration is the standard

procedure and can be used to obtain the inverse solution
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of Laplace transform of Eqs. (13a)–(13f) and (17a)–

(17f). Owing to the complicated integrands usually in-

volved in Bromwich contour integration equations, the

Riemann-sum approximation method is used to obtain

the inverse solutions of Laplace transform [20,23]

hðn; gÞ ffi ecg

g
1

2
�hhðn; cÞ

"
þRe

XN
n¼1

�hh n; c

�
þ inp

g

�
ð � 1Þn

#
;

i ¼
ffiffiffiffiffiffiffi
�1

p
ð20Þ

where �hh is the dimensionless temperature obtained from

Eqs. (13a)–(13f) or (17a)–(17f), Re is the real part of the

summation in Eq. (20), the maximum value of N is

4· 106. The stopping criterion for Eq. (20) is

hN � hN�1

hN�1










6 10�7; ð21Þ

and c is determined from Eq. (22)

cg ffi 4:7 ð22Þ
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Fig. 2. Comparisons between the analytical solutions of Zhang

and Liu [14] and the analytical–numerical solutions of Eqs.

(13a)–(13c) for a spherical medium, when nr ¼ 1, ar ¼ 1, kr ¼ 1,

and sr ¼ 1: (a) e ¼ 0:5, (b) e ¼ 0:05.

0.0

1.0

2.0

3.0

4.0

0.0 0.2 0.4 0.6 0.8 1.0
ξ

θ

hyperbolic
parabolic

η = 0.2η = 0.1
η = 0.2

η = 4.6

η = 0.8

η = 0.6

η = 0.5

η = 1.0 η = 0.6

Fig. 3. Temperature distributions in the bi-layered composite

sphere plotted as a function of the radial position n for e ¼ 0:5,

nr ¼ 0:5, ar ¼ 2:0, kr ¼ 2:0, and sr ¼ 0:5.
4. Results and discussions

To demonstrate the validity of the analytical–nu-

merical technique and the solutions of Eqs. (13a)–(13c),

the results of the special case of the bi-layered composite

sphere are compared with the analytical solution of

Zhang and Liu [14]. When nr ¼ 1, ar ¼ 1, kr ¼ 1 and

sr ¼ 1, the bi-layered composite sphere can be consid-

ered as a one-layer solid sphere. Fig. 2(a) and (b) indi-

cates that there are good agreements between the

analytical solutions of Zhang and Liu [14] and the an-

alytical–numerical solutions of Eqs. (13a)–(13c) for a

single-layer sphere. Fig. 2(a) and (b) also shows that the

heat propagation speeds are finite.

Fig. 3 shows that the temperature distributions in the

bi-layered composite sphere plotted as a function of the

radial position for e ¼ 0:5, nr ¼ 0:5, ar ¼ 2:0, kr ¼ 2:0,
and sr ¼ 0:5. When g ¼ 0:2, the thermal wave had not

reached the interface yet. For g ¼ 0:5, the thermal wave

had passed and left the interface, and it was split into

two waves in the opposing direction. The transmitted

thermal wave retained the initial wavelike characteristic

and continued to travel to the center of the composite

sphere. The reflected thermal wave traveled to the outer

surface. As Fig. 3 indicated, the layer interface reflected

the thermal wave back to the outer surface of the sphere.

For g ¼ 0:6, the thermal wave had reached the center of

the composite sphere, the magnitude of the transmitted

thermal wave was diminished. When the value of g in-

creases, the waveform is gradually blunted and spread

due to the dissipation mechanism. The dimensionless

times g for the composite sphere reaching a quasi-steady

state are 0.6 and 4.6 predicted by the parabolic and
hyperbolic heat conduction models, respectively. Shown

in Fig. 3, the results obtained by solving the hyperbolic

heat conduction equation demonstrate that the thermal
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wave front propagates at a finite speed in the composite

sphere and the temperature fields become very steep in

the vicinities of the thermal wave front. The temperature

profiles predicted by the parabolic heat conduction

equation are lower than that by the hyperbolic heat

conduction equation for the same dimensionless time g.
The effect of dimensionless relaxation time e on the

temperature distribution in the bi-layered composite

sphere at dimensionless time g ¼ 0:5 is shown in Fig. 4.

For e ¼ 0:1, the waveform almost disappeared; for

e ¼ 0:5, the thermal wave had not reached the center of

the composite sphere. As expected, the larger the value

of the relaxation time e is, the lower the thermal wave

speed is. Fig. 5 reveals that the heat propagation speed

varies with the thermal diffusivity ratio ar. From the

definition of relaxation time, the thermal wave speed
0.0
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ξ

θ
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ε = 0.5

ε = 0.3
ε = 0.2

ε = 0.1

Fig. 4. The effect of dimensionless relaxation time e on the

temperature distribution in the bi-layered composite sphere for

g ¼ 0:5, nr ¼ 0:5, ar ¼ 2:0, kr ¼ 2:0, and sr ¼ 0:5.
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Fig. 5. The effect of thermal diffusivity ratio ar on the tem-

perature distribution in the bi-layered composite sphere for

g ¼ 0:5, nr ¼ 0:5, kr ¼ 2:0, sr ¼ 0:5, and e ¼ 0:5.
varies with the thermal diffusivity proportionally. Fig. 5

also displays that the effect of thermal diffusivity ratio ar
on the temperature distributions predicted by the para-

bolic heat conduction model are not significant as those

predicted by the hyperbolic heat conduction model. The

effect of thermal conductivity ratio kr on the heat

propagation speed in the bi-layered composite sphere is

negligible, as depicted in Fig. 6. The temperature in the

composite spherical medium will decrease as the value of

kr increases.
When the value of the relaxation time ratio sr > 1, it

implies that the heat propagation speed in the inner

layer of the composite sphere will be lower than that in

the outer layer. As depicted in Fig. 7, the larger the value

of the relaxation time ratio sr is, the lower the heat

propagation speed is. For the case of ar ¼ 2:0, kr ¼ 2:0,
and sr ¼ 0:5, the thermal wave speed in the inner layer

of the composite sphere will be higher than that in the

outer layer. As shown in Fig. 8(a), the larger the value of
0
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θ

Fig. 6. The effect of thermal conductivity ratio kr on the tem-

perature distribution in the bi-layered composite sphere for

g ¼ 0:5, nr ¼ 0:5, ar ¼ 2:0, sr ¼ 0:5, and e ¼ 0:5.
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the relaxation time ratio sr is, the higher the heat

propagation speed is. On the other hand, when ar ¼ 0:5,
kr ¼ 0:5, and sr ¼ 2:0, the heat transfer propagation

speed in the inner layer of the composite sphere will be

lower than that in the outer layer, and the opposite re-

sults can be displayed in Fig. 8(b).

In Fig. 9, the dimensionless temperature h is plotted

as a function of the dimensionless time g at the interface

of the bi-layered composite sphere with n ¼ 0:5, for

e ¼ 0:5, nr ¼ 0:5, ar ¼ 2:0, kr ¼ 0:5, and sr ¼ 0:5. The

larger the value of the dimensionless relaxation time e is,
the longer time that the composite sphere possesses a

uniform temperature is needed. Fig. 10 shows that the

variation of temperature with t=s at n ¼ 0:5 for e ¼ 0:5,
nr ¼ 0:5, ar ¼ 2:0, kr ¼ 2:0, and sr ¼ 0:5. The wave na-

ture of heat propagation will disappear when t=s > 12,

and these results are similar to the solutions obtained by

Zhang and Liu [14] for a one-layer sphere.

The normalized heat flux Qn is defined as

Qn ¼
Q
Q0

ð23Þ

where Q is the dimensionless heat flux in the bi-layered

composite sphere, and Q0 is the dimensionless heat flux

on the outer surface.
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Fig. 11 displays the heat flux distribution in the bi-

layered composite sphere as a function of the radial

position for e ¼ 0:5, nr ¼ 0:5, ar ¼ 2:0, kr ¼ 2:0, and

sr ¼ 0:5. When g ¼ 0:1, 0.2, and 0.3, the thermal wave

had not reached the interface of the composite sphere

yet. All the heat flux distributions were coincided one

another before the thermal wave reached the interface,

since they had not been affected by the reflected waves.

The heat flux histories predicted by the hyperbolic heat

conduction equation also reveals that the heat propa-

gation speed is finite.
5. Conclusions

The dimensionless temperatures predicted by the

hyperbolic heat conduction model are greater than the

corresponding values for the parabolic heat conduction

model. The temperature profiles predicted by the hy-

perbolic heat conduction equation model in the com-

posite spherical medium are larger than the temperature

on the outer surface. These results are different from the

solutions predicted by the parabolic heat conduction

model. Both the temperature profiles and heat flux his-

tories reveal the wave nature of heat propagation, and

that the heat propagation speed is finite.

The effects of different parameters such as the relax-

ation time e, the radius ratio nr, the thermal diffusivity

ratio ar, the thermal conductivity ratio kr, and the re-

laxation time ratio sr of the inner and outer medium are

studied and presented. The larger the value ar is, the

higher the heat propagation speed is. The larger the

values e and sr are, the lower the thermal speed is.

The effect of kr on the heat propagation speed is negli-

gible. When t=s > 12, the wave feature of heat propa-

gation will disappear.
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